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Outline of Chi, Fan, Ing and L. (2024)

m An economic forecasting example
m Time series knockoffs inference
m Numerical studies

m Theoretical justifications
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Inflation prediction

m |dentifying key economic factors that can influence inflation is a
long-standing research pursuit (King et al., 1995, Stock and
Watson, 1999, Crump et al., 2022)

m Main challenges are

m serial dependence

m large number of potentially important covariates (time
series covariates, their lags, and non-time series
covariates)

m nonlinearities attributed to the regime shifts and structural
changes (Hamilton [1989], Tong and Lim [1980])
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The US inflation series
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Figure 1: The U.S. inflation from May 2013 to January 2023. Number
of potential time series covariates p = 127 (e.g., consumer price
indices, unemployment rates, exchange rates, housing indices, stock
market indices,...
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Rolling window prediction

Pros: mitigate the effects of nonlinearity and nonstationarity
Cons: sample size in each window is usually small

m Small sample size, together with serial dependence, presence of
nonlinearity, nonstationarity, and high-dimensional covariates,
makes practical inference highly challenging for time series data

m Goal: develop a reliable variable selection approach specifically
tailored for addressing high-dimensional time series data
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Variable selection with high dimensional time series

m Problem setup:

m Scalar time series response {y:}1<t<n

m Covariate vector {X;}1<i<n With x; € RP containing time
series covariates, lags, and possibly non-timeseries
covariates

m pis of high dimension

m (X;,);) is stationary across ¢

Assumption: there exists S* C {1,--- , p} such that

Vi 1 Xt,S*‘

X s+

Stationarity guarantees that S* is independent of t

m Goal: developing an algorithm that estimates S* by S such that

<T*

FDR =E

K?tmél
S|
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Related literature

m False discovery rate (FDR) has been widely used for variable
selection error rate control (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001; Fan, Han and Gu, 2012; ...)

m Valid p-values are needed for the BH or BY framework

m Remains largely unclear how to construct justified p-values for
many popular nonparametric learning tools (e.g. random forests
and deep neural networks)
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Model-X Knockoffs Framework

m Introduced in Candés, Fan, Janson and L. (2018)

Bypass the use of p-values to achieve FDR control

Model-free: any model for the conditional dependence
Y X, Xp

Dimension free: any dimension (including p > n)

Known covariate distribution: joint distribution of
X =(Xi,---, Xp) known

Theoretically guaranteed to have finite-sample FDR control

m Intuition:

Generate “fake” copies of original covariates which are
irrelevant to Y but mimics the dependence structure of
original covariates

Act as controls for assessing importance of original
variables
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Model-X Knockoff Variables

Definition 1 (Candes, Fan, Janson and L., 18)

Model-X knockoffs for the family of random variables
x=(Xi,- - ,Xp)T are a new family of random variables

X = (Xi,---, X,)T constructed such that

m forany subset Sc {1,---,p},
(xTaiT)swap(S)g(xTviT)

m XL ylx
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The Knockoffs Statistics

Knockoff statistics W; = f(y, [X, )~(]) are variable importance
measures

m Positive W;: original more important, strength measured by
magnitude

m Null variables: W; should be symmetric around 0

m Eg: Lasso Coefficient Difference W; = |3;| — |31l

Set of selected variables

S={j:W>T}
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Choice of Threshold

Intuition of FDR control

FDR =E

[ #selected null variables
| #selcted variables ]
[#{null W, > T}}

L #HW, > T}

[#{null — W, > T}]

L #HW =T}

[#{-W; > T}]

L #HW; > T}

This suggests to choose the threshold T by examining the ratio

#-W > T}
#{W; > T}
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Theorem 2 (Candes, Fan, Janson and L., 18)

Letting

T+#{: W<
#{ W >t}

T, = min {t >0: 4 < T*} (Knockoffs+)

and setting S= {j: W; > T, }, controls the usual FDR,

E| S0 o
|S| V1
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Challenges with time series data

i, X4
y27 X2

yx =" time
Yn, Xp

m Model-X knockoffs assumes

m Row independence (i.e., no serial correlation)

m Known covariate distribution for x;

m Too strong for time series data!
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m Row independence = knockoff variables can be generated in a
row-wise fashion independent of other rows

X1 — i1

Xo — ig

X, — | X,

Question: is this row-wise construction of knockoff variables still valid
for time series data with serial dependence?
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m Consider the example where

Xt = (y[71>"' 7yt7p)T;

then knowing covariate distribution of x; leads to known
stationary distribution of the time series, rendering the variable
selection invalid!

Question: how to relax the assumption of known covariate
distribution?
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Three key ingredients

m Subsample: to overcome the difficulty caused by serial
dependence, we consider subsamples

n—k
qg+1

Hk:{k+s(q+1):s:071a"'7L J}

forke{1,--- . g+1}

m Robust knockoffs: to accommodate unknown covariate
distribution, on each subsample Hj, we apply the robust
knockoffs inference (Barber, Candés and Samworth, 2020),
yielding a set of selected variables Sx

m Ensemble: produce an ensemble inference using the e-value
method (Wang and Ramdas (2022))
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TSKI

X1, X2, X3, ey Xg) ooe

X1, Xq+2,X2q+3) - X2, Xq+3) X2g+4s - Xq+1:X2q+2,X3q+3» -

Robust
knockoffs

Robust
knockoffs

Robust
knockoffs

e-value aggregation to get
final set §
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TSKI

Algorithm 1: Robust time series knockoffs inference (TSKI) via e-values

1 Let 0 <73 <1 be a constant and 0 < 7% < 1 the target FDR level.
2 For each k € {1,--- ,q+ 1}, calculate the knockoff statistics Wlk', [N W’? satisfying
(2) using sample {x;, Z;, Yi}icn, -
3 Calculate the e-value statistics e; = (g +1)7! Zz':l eg‘-', where®
_ P lavery
L+ 370 Lywraogry’ )
1T+ #{j: WF < —t} -
T b
#{j - WE>tpvi —

<o

Tkmin{tEWﬁ:

and W = {|WF| : [WE| > 0} for each k € {1,-- ,¢+ 1}.
aLet 5={j: ej > p(T* x @)*1} with & = max{k : ey > p(T* x k)~'}, where €(
are the ordered statistics of e;’s such that €)= > €(p)-

)

9 S

“min () and max () are defined as co and 0, respectively.
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Subsampling effectiveness

m Condition 1 (h-step 3-mixing with exponential decay). Assume
that process {z;} is an m-dimensional stationary Markov chain
with a transition kernel p(-, -) and stationary distribution . There
exist a measurable function V : R™ — [0, c0) and some
constants 0 < p < 1 and Cy > 0 such that for each x € R™,

1P"(%,-) = 7(-)l|7v < Cp"V(x),

where p”(-, ) denotes the h-step transition kernel, || - || 7v
represents the total variation distance, and C > 0 is some
constant

m Can hold for many popular time series models
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Example: ARX process

Proposition 1

Letx; = (Yi—1, -, Yiek, )T be from pp-dimensional
autoregressive models W/th exogenous variables (ARX)

Yt Za!YI—I+ZZBI)Ht /+1+5tu
1=1 j=1

where H(' (') + Z;‘% b/(') Ht’) ’ and ¢; and eﬁ’ ) are Gaussian.

Assume that for some constant C, > 0 and sufficiently small s, > 0,

sup{pnexp (—s2h)} < Co. (1)
h>0

Then under some regularity conditions of the regression coefficients,
{xﬁh)} satisfies Condition 1 with h-step.

Suggested h: h ~ (log pp)'*?
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Robust knockoffs inference

Relaxing the known covariate distribution assumption:

m x5 RP~T x RP~1 — R : coordinatewise knockoff generator for
eachje {1,---,p} (approximate the distribution Xj|x_;)

m r(X,-): knockoff generator used to generate knockoff variables x

m Condition 2. The knockoff generator (-, -) is independent of
training data {(x;, Y;)},

m Condition 3 (pairwise exchangeability). For each 1 < j < p, if
z= (Z1, : ,Z )T is sampled from the conditional distribution
(Xt X, X X1+, %), ), then (X[, Z,x_;,2_) and
z, X ,X_j,Z_;) have the same distribution with XT sampled
from m,(x,,, -) (a conditional distribution that approxmates that
of Xjlx_)
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Condition 3 illustration

Recall:

m x;: RP~! x RP~T — R : coordinatewise knockoff generator for
eachje {1, ,p}

= x(X,-): knockoff generator used to generate knockoff variables x

Original covariate vector:

(X0 Xpy e Xy o) Xp)

New vector:

(X1, Xqy o .Xfr, ,Xp) Exchangeability

Generate X" from K (x_j,")

Generate Z = (Zy,..,Z
k((X1, X, ...
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Condition 3 illustration

Original covariate vector:

X1, Xa, s Xj, 0 Xp)
New vecto h bil
(X1, X,, Exchangeability

v+
Generate X;" fron x;(x_j,")

/ Generate
K((leXZ; -

Approximate conditional
distribution of X;|x_;
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In implementation, the knockoff variables are generated as
/@(X, )
m Eg: in Gaussian case,
X|x = (Ip — sT-1)x + (2sl, — s -1)z,z ~ N(O, Ip)

Only «(-,-) is needed for implementation; ;'s are only needed
for theoretical derivation

Barber, Candés and Samworth (2020) showed that under the
approximate exchangeability, model-X knockoffs achieves the
approximate FDR control under the i.i.d. data condition

Question: how does the serial dependence affect the robust
knockoffs procedure?
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E-value aggregation

Recall:

m Subsampling yields g + 1 sets of selected variables

m Directly taking union or intersection does not guarantee FDR
control

m We will adopt the idea of e-value aggregation
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E-value

m Given a null hypothesis, we call a non-negative random variable
E an “e-value” if E[E] < 1 under the null

m To test a hypothesis at level o, we can reject the null hypothesis
when E > 1/«

m With ideal knockoffs generated from the true covariate
distribution, Ren and Barber (2024) showed that

P xX ey
T+ 30 Yw<—13

&

are (relaxed) e-values, and that the e-BH procedure (Wang and
Ramdas (2022)) achieves FDR control in multiple testing

S={j:e>p(rk)"'} with k = max{k : ey > p(r*k)~"}
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TSKI using e-value aggregation

The average of multiple e-values is still an e-value

X1, Xq+2: X2q+3 - X2, Xq+3:X2q+4s Xq+1:X2q+2,X3q+3) -

Robust Robust Robust
knockoffs knockoffs knockoffs

e-value aggregation

Final set of selected variables §
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Question: Are these still valid e-values that can guarantee FDR
control in the existence of serial dependence?
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SETARX model

For each integer t and . € {0,5}, we define

v — > 2 ((—05YT1BY,j+0.6( )y Hij+ 312 (1 Hij) +er, i Yiog > 0.7,
CT TR —(—05Y B, + 0.6(— g Hey+ 30,8 4 Hey) + e, otherwise,

{et} ~iia. N(O,1)

m =07

Hf,j =7 X H;_17j + €t with j € {1,-~- ,50} andn =0.2

u Xt = (%717 T Yt7207 ht; h[*‘] ) hf727 h[737 hf*4) Wlth
h: = (H:1,-- -, Hi50), giving rise to p = 270.
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TSKI performance

Method n/p/n/t g FDR Power n/p/n/t g FDR Power
TSKLLCD 0 0157 0698 0 0.164 0.870
TSKLLCD 1 0026 0051 1 0075 0413
TSKLMDA | 200/270/02/0 o173 gu56 | 300/270/02/0 o 57 omis
TSKI-MDA 1 0026 0028 1 0041 0102
TSKLLCD 0 0130 0287 0 0.160 0514
TSKLLCD 1 0023 0019 1 0032 0048
TSKLMDA | 200/270/02/5 o (1ag 915 | 300/270/02/5 4 4196 (506
TSKI-MDA 1 0012 0011 1 0038 0036

Method n/p/n/t g FDR Power

TSKLLCD 0 0.176 0.939

TSKL-LCD 1 0099 0872

TSKLMDA | 900/270/02/0 o o751 (922

TSKI-MDA 1 0092 0550

TSKLLCD 0 0.141 0634

TSKI-LCD 1 0086 0267

TSKL-MDA | 900/270/02/5 o 466 679

TSKI-MDA 1 0084 0216
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Comparing with BH and Adaptive Lasso

Adaptive Lasso LS + BY

n/p/n/t FDR Power n/p/n/. FDR Power
200/270/0.2/0 0.520 0.964  200/270/0.2/0 - -
300/270/0.2/0 0.468 0.997  300/270/0.2/0 0.000 0.001
500/270/0.2/0 0.657 1.000  500/270/0.2/0 0.027 0.763
200/270/0.2/5 0.604 0.705  200/270/0.2/5 - -
300/270/0.2/5 0.563 0.786  300/270/0.2/5 0.018 0.006
500/270/0.2/5 0.677 0.891  500/270/0.2/5 0.026 0.276
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Real Data Application
m Investigating the temporal relation between the (one month
ahead) monthly inflation and other macroeconomic time series

m The popular FRED-MD data set (Jurado, Ludvigson and Ng, 2015; McCracken and
Ng, 2016; Medeiros and Mendes, 2016)

m Covariates include 127 other monthly macroeconomic variables
and their first lags in an AR(2) model (with feature dimensionality
p = 254)

m The one month ahead inflation as response variable
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Continued
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Figure 1: The U.S. inflation from May 2013 to January 2023.

m Inflation series from May 2013 to January 2023 (as response)

m Five-year rolling windows for analysis of versatile time varying
patterns (sample size n = 60 for each window)
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Continued

m Applied TSKI-LCD with target FDR level 7 = 0.2 and g = 0, 1

m |dentified some important covariates around 2020 when
COVID-19 pandemic began
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Figure 2: The left panel displays the percentage of times for “having
any selections” indicators over 100 repetitions. The right panel shows
the percentage of times of being selected for each covariate.
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Continued

m Choice of g > 0 (with subsampling) indeed more conservative in
terms of FDR control compared to that of g = 0 (without
subsampling)

m Three frequently selected variables are ACOGNO (number of
new orders for consumer goods), EXCAUSx (U.S./Canada
exchange rate), and CLAIMSx (U.S. initial claims for
unemployment benefits)

m COVID-19 pandemic has much stronger effects on the U.S.
economy than the inflation drop in 2015 due to oil supply shock
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Continued
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Figure 3: number of new orders for consumer goods
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Continued
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Figure 4: U.S./Canada exchange rate
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Continued
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Figure 5: U.S. initial claims for unemployment benefits
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Asymptotic Theory of TSKI

Theorem 1. Under some regularity conditions, we have

q+1

FDR < inf ["¢° +Z]P’ max KL > )] )
2

g+1
+> sup IP(Xk € D) — P(XF € D),

k=1 .DeR#Hkx(Zpﬂ)

where 0 < 7* < 1 is the target FDR level and foreach1 < k < g+ 1

and1 <j<p,
fX‘\x ( ‘X_) xt ( ji |X_")
Z' ( i 77X X\ if (3)

fX/\x_/(Xi/T'r‘xfij) )~(jf|x,,v( lﬂlel)

m {X7,X;,Y7}", ani.id. counterpart of {x;, X;, i},

m X = {X,‘,)?,‘, Y,‘},‘er and XI? = {X}T,y(;r, Yl-ﬂ},‘er for each
kef{l,--- ,g+1}
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q+1 kn
FDR < inf [T*e€ +3 P(max KL, > ¢)
e>0 L= M<j<p

g+
+>° sup  |P(X € D) —P(X] € D),
k=1 DeRH#Hk % (2p+1)

m The red term is caused by the misspecified conditional
distribution Xj|x_;; matches the result in (Barber, Candés and samworth, 2020)

m If no misspecification, the red term becomes 0, and ¢ = 0

m The blue term is caused by the serial dependence after
subsampling

Jinchi Lv. USC Marshall — 49/59



Continued

Corollary. If {x;};>1 satisfies Condition 1 with g-step and constants
Co>0and 0 < p < 1,and Y;is x;.1-measurable, then (2) holds with

q-+1
sup [P(X € D)~ P47 € D) < Cox pfxn. (4)
k—1 DER#Hx(@p+1)

Moreover, when (Y}, x;)’s are i.i.d., (4) holds with p = 0

m The term Cyp9n reflects the price we pay for serial dependency
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Continued

m The first result on FDR control for knockoffs inference under the
setting of dependent data

m Enjoys asymptotic FDR control as long as log n = 0(q)

m Allows for high-dimensional time series data of feature
dimensionality p; = O(nK) with some K > 0 for the choice of
q = [(log n)'*" | with some n > 0
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Power Analysis

m Power performance depends on signal strength measure

m Consider GLM with link function g(-):
E(Yilxt) = o(x[5°), (5)

m Use GLM-Lasso coefficients difference to construct knockoff

statistics
W/’ = |3j| - |5j+p|,

where
Bty Bop)T

n 2p
= arg_min {Zz(—nx(xmhﬁw((xf,ihﬁ))+nAnZﬁ,|}
j=1

2
BeR? | T3
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Conditions for power analysis

= Condition 5. For lim,_,., ks, = 0, it holds that
P (21251 18— B/ < Co(#S*))\,,) >1— K,

m Condition 6. There exists k1,g~' — oo such that
minjes- B > KkinAn

m Condition 7. For lim,_,.. kop = 0, it holds that 2(#5*) ™" < ¢
and P(#{j : Wj" > Tk} > ¢1(#S%)) > 1 — ko, with
kef{l,--- ,g+1}
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Theoretical guarantee for power analysis

Theorem 3

It holds that for all large n,

P ({é — g {#iksfs) > 4°°(k11+q)}> > 1—(q+1) (Ken--Kan)
(6)

If further 7y = 7 x K~ x (1 — 4(q + 1)cok;,') with some K > 1, then
for all large n,

. (#(S*m§)> . (1 _ @+ ) +0)K

45 e = (q+ 1) X (ke + kSn))xmn,

(7)

where limp_oc kan = 1 and

. _ #({j: Wf > TK N (87)°)
9€:|nf{020.1ST§§+1E< #{j:W/‘ZT"}\H <7+
(8)
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m (6) shows that with asymptotic probability 1, the set of selected
features is either () or has TDP close to 1

m The S = () can happen if each and every subsample yields a
large number of false positives (i.e., poor FDR control), making
the e-values for all features very small so that none can pass the
threshold

m (7) ensures that if FDR is controlled with (my + 6.)g = o(1), then
the power is asymptotically one
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Conclusions
m Suggested the new times series knockoffs inference (TSKI)
procedure for feature selection with FDR control

m Developed a general theory showing that TSKI can admit
asymptotic FDR control and appealing power in
high-dimensional time series setting

m Justified robustness of knockoffs inference for dependent data

m Many interesting yet challenging questions remain for knockoffs
inference with time series data (e.g. complicated serial
dependency and nonlinear structures)
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