High-Dimensional Knockoffs Inference (part II)

Jinchi Lv Data Sciences and Operations Department Marshall School of Business University of Southern California

http://faculty.marshall.usc.edu/jinchi-lv

USC Summer School on Uncertainty Quantification (08/09/2024)

Jinchi Lv, USC Marshall - 1/59

Outline of Chi, Fan, Ing and L. (2024)

Outline of Chi, Fan, Ing and L. (2024)

- An economic forecasting example
- Time series knockoffs inference
- Numerical studies
- Theoretical justifications

Inflation prediction

Inflation prediction

- Identifying key economic factors that can influence inflation is a long-standing research pursuit (King et al., 1995, Stock and Watson, 1999, Crump et al., 2022)
- Main challenges are
 - serial dependence
 - large number of potentially important covariates (time series covariates, their lags, and non-time series covariates)
 - nonlinearities attributed to the regime shifts and structural changes (Hamilton [1989], Tong and Lim [1980])

The US inflation series

Figure 1: The U.S. inflation from May 2013 to January 2023. Number of potential time series covariates p = 127 (e.g., consumer price indices, unemployment rates, exchange rates, housing indices, stock market indices,...

Rolling window prediction

Pros: mitigate the effects of nonlinearity and nonstationarity

Cons: sample size in each window is usually small

- Small sample size, together with serial dependence, presence of nonlinearity, nonstationarity, and high-dimensional covariates, makes practical inference highly challenging for time series data
- Goal: develop a reliable variable selection approach specifically tailored for addressing high-dimensional time series data

Variable selection with high dimensional time series

- Problem setup:
 - Scalar time series response $\{y_t\}_{1 \le t \le n}$
 - Covariate vector {*x*_t}_{1≤t≤n} with *x*_t ∈ ℝ^p containing time series covariates, lags, and possibly non-timeseries covariates
 - *p* is of high dimension
 - $(\mathbf{x}_t, \mathbf{y}_t)$ is stationary across t
- Assumption: there exists $S^* \subset \{1, \cdots, p\}$ such that

$$y_t \perp \mathbf{x}_{t,S^{*c}} | \mathbf{x}_{t,S^*}$$

- Stationarity guarantees that S* is independent of t
- Goal: developing an algorithm that estimates S^* by \widehat{S} such that

$$\mathsf{FDR} = \mathbb{E}\left[rac{|(\mathcal{S}^*)^c \cap \widehat{\mathcal{S}}|}{|\widehat{\mathcal{S}}|}
ight] \leq au^*$$

Related literature

- False discovery rate (FDR) has been widely used for variable selection error rate control (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001; Fan, Han and Gu, 2012; ...)
- Valid p-values are needed for the BH or BY framework
- Remains largely unclear how to construct justified p-values for many popular nonparametric learning tools (e.g. random forests and deep neural networks)

Review of Model-X Knockoffs Inference

Jinchi Lv, USC Marshall - 10/59

Model-X Knockoffs Framework

- Introduced in Candès, Fan, Janson and L. (2018)
 - Bypass the use of p-values to achieve FDR control
 - Model-free: any model for the conditional dependence $Y|X_1, \cdots, X_p$
 - Dimension free: any dimension (including *p* > *n*)
 - Known covariate distribution: joint distribution of x = (X₁, · · · , X_p) known
 - Theoretically guaranteed to have finite-sample FDR control
- Intuition:
 - Generate "fake" copies of original covariates which are irrelevant to Y but mimics the dependence structure of original covariates
 - Act as controls for assessing importance of original variables

Definition 1 (Candès, Fan, Janson and L., 18)

Model-X knockoffs for the family of random variables $\mathbf{x} = (X_1, \cdots, X_p)^T$ are a new family of random variables $\widetilde{\mathbf{x}} = (\widetilde{X}_1, \cdots, \widetilde{X}_p)^T$ constructed such that

• for any subset $S \subset \{1, \cdots, p\}$,

$$(\mathbf{x}^{T}, \widetilde{\mathbf{x}}^{T})_{swap(S)} \stackrel{d}{=} (\mathbf{x}^{T}, \widetilde{\mathbf{x}}^{T})$$

a $\widetilde{\mathbf{X}} \perp \mathbf{y} | \mathbf{x}$

The Knockoffs Statistics

Knockoff statistics $W_j = f_j(\mathbf{y}, [\mathbf{X}, \widetilde{\mathbf{X}}])$ are variable importance measures

- Positive W_j: original more important, strength measured by magnitude
- Null variables: W_i should be symmetric around 0
- Eg: Lasso Coefficient Difference $W_j = |\widehat{\beta}_j| |\widehat{\beta}_{j+p}|$

Set of selected variables

$$\widehat{S} = \{j : W_j > T\}$$

Choice of Threshold

Intuition of FDR control

$$\begin{aligned} \mathsf{FDR} &= \mathbb{E}\left[\frac{\# \mathsf{selected null variables}}{\# \mathsf{selcted variables}}\right] \\ &= \mathbb{E}\left[\frac{\# \{\mathsf{null } \ W_j \geq T\}}{\# \{W_j \geq T\}}\right] \\ &\approx \mathbb{E}\left[\frac{\# \{\mathsf{null } - W_j \geq T\}}{\# \{W_j \geq T\}}\right] \\ &\leq \mathbb{E}\left[\frac{\# \{-W_j \geq T\}}{\# \{W_j \geq T\}}\right] \end{aligned}$$

This suggests to choose the threshold T by examining the ratio

$$\frac{\#\{-W_j \ge T\}}{\#\{W_j \ge T\}}$$

Jinchi Lv, USC Marshall - 14/59

Theorem 2 (Candès, Fan, Janson and L., 18) Letting

$$T_{+} = \min\left\{t > 0: rac{1 + \#\{j: W_{j} \le -t\}}{\#\{j: W_{j} \ge t\}} \le au^{*}
ight\} \quad (Knockoffs+)$$

and setting $\widehat{S} = \{j : W_j \ge T_+\}$, controls the usual FDR,

$$\mathbb{E}\left[\frac{|\widehat{\boldsymbol{S}} \cap \boldsymbol{S}^*|}{|\widehat{\boldsymbol{S}}| \vee \mathbf{1}}\right] \leq \tau^*.$$

Time Series Data

Jinchi Lv, USC Marshall - 16/59

Challenges with time series data

$$[\mathbf{y}, \mathbf{X}] = \begin{bmatrix} y_1, & \mathbf{X}_1 \\ y_2, & \mathbf{X}_2 \\ \vdots \\ y_n, & \mathbf{X}_n \end{bmatrix} \int \text{time}$$

- Model-X knockoffs assumes
 - Row independence (i.e., no serial correlation)
 - Known covariate distribution for x_t
- Too strong for time series data!

 Row independence → knockoff variables can be generated in a row-wise fashion independent of other rows

$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} \xrightarrow{\longrightarrow} \begin{bmatrix} \widetilde{\mathbf{x}}_1 \\ \widetilde{\mathbf{x}}_2 \\ \vdots \\ \vdots \\ \widetilde{\mathbf{x}}_n \end{bmatrix}$$

Question: is this row-wise construction of knockoff variables still valid for time series data with serial dependence?

Consider the example where

$$\mathbf{x}_t = (\mathbf{y}_{t-1}, \cdots, \mathbf{y}_{t-p})^T,$$

then knowing covariate distribution of \mathbf{x}_t leads to known stationary distribution of the time series, rendering the variable selection invalid!

Question: how to relax the assumption of known covariate distribution?

The TSKI Procedure

Jinchi Lv, USC Marshall - 20/59

Three key ingredients

 Subsample: to overcome the difficulty caused by serial dependence, we consider subsamples

$$H_k = \{k + s(q+1) : s = 0, 1, \cdots, \lfloor \frac{n-k}{q+1} \rfloor\}$$

for $k \in \{1, \cdots, q+1\}$

- Robust knockoffs: to accommodate unknown covariate distribution, on each subsample H_k , we apply the robust knockoffs inference (Barber, Candès and Samworth, 2020), yielding a set of selected variables \hat{S}_k
- Ensemble: produce an ensemble inference using the e-value method (Wang and Ramdas (2022))

Jinchi Lv, USC Marshall - 22/59

TSKI

Algorithm 1: Robust time series knockoffs inference (TSKI) via e-values

- 1 Let $0 < \tau_1 < 1$ be a constant and $0 < \tau^* < 1$ the target FDR level.
- 2 For each $k \in \{1, \dots, q+1\}$, calculate the knockoff statistics W_1^k, \dots, W_p^k satisfying (2) using sample $\{\boldsymbol{x}_i, \boldsymbol{\widetilde{x}}_i, Y_i\}_{i \in H_k}$.
- **3** Calculate the e-value statistics $e_j = (q+1)^{-1} \sum_{k=1}^{q+1} e_j^k$, where^{*a*}

$$e_{j}^{k} = \frac{p \times \mathbf{1}_{\{W_{j}^{k} \ge T^{k}\}}}{1 + \sum_{s=1}^{p} \mathbf{1}_{\{W_{s}^{k} \le -T^{k}\}}},$$

$$T^{k} = \min\left\{t \in \mathcal{W}_{+}^{k} : \frac{1 + \#\{j : W_{j}^{k} \le -t\}}{\#\{j : W_{j}^{k} \ge t\} \vee 1} \le \tau_{1}\right\},$$
(3)

and $\mathcal{W}^{k}_{+} = \{|W^{k}_{s}| : |W^{k}_{s}| > 0\}$ for each $k \in \{1, \dots, q+1\}$. 4 Let $\hat{S} = \{j : e_{j} \ge p(\tau^{*} \times \hat{k})^{-1}\}$ with $\hat{k} = \max\{k : e_{(k)} \ge p(\tau^{*} \times k)^{-1}\}$, where $e_{(j)}$'s are the ordered statistics of e_{j} 's such that $e_{(1)} \ge \dots \ge e_{(p)}$.

 $a^{a}\min \emptyset$ and $\max \emptyset$ are defined as ∞ and 0, respectively.

Subsampling effectiveness

• Condition 1 (*h-step* β *-mixing with exponential decay*). Assume that process $\{z_t\}$ is an *m*-dimensional stationary Markov chain with a transition kernel $p(\cdot, \cdot)$ and stationary distribution π . There exist a measurable function $V : \mathbb{R}^m \to [0, \infty)$ and some constants $0 \le \rho < 1$ and $C_0 > 0$ such that for each $\mathbf{x} \in \mathbb{R}^m$,

$$||\boldsymbol{\rho}^{h}(\mathbf{x},\cdot) - \pi(\cdot)||_{TV} \leq C \rho^{h} V(\mathbf{x}),$$

where $p^h(\cdot, \cdot)$ denotes the *h*-step transition kernel, $\|\cdot\|_{TV}$ represents the total variation distance, and C > 0 is some constant

Can hold for many popular time series models

Example: ARX process

Proposition 1

Let $\mathbf{x}_t = (Y_{t-1}, \dots, Y_{t-k_1}, \mathbf{h}_t^T)^T$ be from p_h -dimensional autoregressive models with exogenous variables (ARX)

$$Y_{t} = \sum_{j=1}^{k_{1}} \alpha_{j} Y_{t-j} + \sum_{l=1}^{k_{2}} \sum_{j=1}^{k_{3l}} \beta_{j}^{(l)} H_{t-j+1}^{(l)} + \varepsilon_{t},$$

where $H_t^{(l)} = \epsilon_t^{(l)} + \sum_{j=1}^{k_{3l}} b_j^{(l)} H_{t-j}^{(l)}$, and ε_t and $\epsilon_t^{(l)}$ are Gaussian. Assume that for some constant $C_2 > 0$ and sufficiently small $s_2 > 0$,

$$\sup_{h>0} \{p_h \exp\left(-s_2 h\right)\} \le C_2. \tag{1}$$

Then under some regularity conditions of the regression coefficients, $\{\mathbf{x}_{t}^{(h)}\}$ satisfies Condition 1 with h-step.

Suggested *h*: $h \sim (\log p_h)^{1+\delta}$

Robust knockoffs inference

Relaxing the known covariate distribution assumption:

- κ_j : ℝ^{p-1} × R^{p-1} → ℝ : coordinatewise knockoff generator for each j ∈ {1, · · · , p} (approximate the distribution X_i|**x**_{-i})
- $\kappa(\mathbf{x}, \cdot)$: knockoff generator used to generate knockoff variables $\widetilde{\mathbf{x}}$
- Condition 2. The knockoff generator κ(·, ·) is independent of training data {(x_i, Y_i)}ⁿ_{i=1}
- Condition 3 (*pairwise exchangeability*). For each $1 \le j \le p$, if $\widetilde{\boldsymbol{z}} = (\widetilde{Z}_1, \cdots, \widetilde{Z}_p)^T$ is sampled from the conditional distribution $\kappa((X_1, \cdots, X_{j-1}, \widetilde{X}_j^{\dagger}, X_{j+1}, \cdots, X_p), \cdot)$, then $(\widetilde{X}_j^{\dagger}, \widetilde{Z}_j, \boldsymbol{x}_{-j}, \widetilde{\boldsymbol{z}}_{-j})$ and $(\widetilde{Z}_j, \widetilde{X}_j^{\dagger}, \boldsymbol{x}_{-j}, \widetilde{\boldsymbol{z}}_{-j})$ have the same distribution with $\widetilde{X}_j^{\dagger}$ sampled from $\kappa_j(\boldsymbol{x}_{-j}, \cdot)$ (a conditional distribution that approximates that of $X_j|\boldsymbol{x}_{-j})$

Condition 3 illustration

Recall:

- κ_j : ℝ^{p-1} × R^{p-1} → ℝ : coordinatewise knockoff generator for each j ∈ {1, · · · , p}
- $\kappa(\mathbf{x}, \cdot)$: knockoff generator used to generate knockoff variables $\widetilde{\mathbf{x}}$

Condition 3 illustration

In implementation, the knockoff variables are generated as $\kappa(\mathbf{x},\cdot)$

• Eg: in Gaussian case,

$$\widetilde{\mathbf{x}} | \mathbf{x} = (I_p - s \widehat{\Sigma^{-1}}) \mathbf{x} + (2 s I_p - s^2 \widehat{\Sigma^{-1}}) \mathbf{z}, \mathbf{z} \sim N(0, I_p)$$

- Only κ(·, ·) is needed for implementation; κ_j's are only needed for theoretical derivation
- Barber, Candès and Samworth (2020) showed that under the approximate exchangeability, model-X knockoffs achieves the approximate FDR control under the i.i.d. data condition
- Question: how does the serial dependence affect the robust knockoffs procedure?

Recall:

- Subsampling yields q + 1 sets of selected variables
- Directly taking union or intersection does not guarantee FDR control
- We will adopt the idea of e-value aggregation

E-value

- Given a null hypothesis, we call a non-negative random variable E an "e-value" if $\mathbb{E}[E] \leq 1$ under the null
- To test a hypothesis at level α, we can reject the null hypothesis when E ≥ 1/α
- With ideal knockoffs generated from the true covariate distribution, Ren and Barber (2024) showed that

$$e_{j} = \frac{p \times 1_{\{W_{j} > T\}}}{1 + \sum_{l=1}^{p} 1_{\{W_{l} \le -T\}}}$$

are (relaxed) e-values, and that the e-BH procedure (Wang and Ramdas (2022)) achieves FDR control in multiple testing

$$\widehat{S} = \{j : e_j \ge p(\tau^* \widehat{k})^{-1}\} \text{ with } \widehat{k} = \max\{k : e_{(k)} \ge p(\tau^* k)^{-1}\}$$

TSKI using e-value aggregation

The average of multiple e-values is still an e-value

Jinchi Lv, USC Marshall - 32/59

Question: Are these still valid e-values that can guarantee FDR control in the existence of serial dependence?

Simulation Studies

Jinchi Lv, USC Marshall - 34/59

SETARX model

For each integer *t* and $\iota \in \{0, 5\}$, we define

$$Y_{t} = \begin{cases} \sum_{j=1}^{2} (-0.5)^{j-1} \beta Y_{t-j} + 0.6 (\sum_{j=1}^{\iota} H_{t,j} + \sum_{j=\iota+1}^{15} H_{t,j}) + \varepsilon_{t}, & \text{if } Y_{t-1} > 0.7, \\ \sum_{j=1}^{2} - (-0.5)^{j-1} \beta Y_{t-j} + 0.6 (-\sum_{j=1}^{\iota} H_{t,j} + \sum_{j=\iota+1}^{15} H_{t,j}) + \varepsilon_{t}, & \text{otherwise,} \end{cases}$$

•
$$\{\varepsilon_t\} \sim_{i.i.d.} N(0,1)$$

•
$$H_{t,j} = \eta \times H_{t-1,j} + \epsilon_{t,j}$$
 with $j \in \{1, \cdots, 50\}$ and $\eta = 0.2$

•
$$\mathbf{x}_{t} = (Y_{t-1}, \cdots, Y_{t-20}, \mathbf{h}_{t}, \mathbf{h}_{t-1}, \mathbf{h}_{t-2}, \mathbf{h}_{t-3}, \mathbf{h}_{t-4})$$
 with $\mathbf{h}_{t} = (H_{t,1}, \cdots, H_{t,50})$, giving rise to $p = 270$.

TSKI performance

Method	$n/p/\eta/\iota$	q	FDR	Power		n/p/r	η/ι	q	FDR	Power
TSKI-LCD	200/270/0.2/0	0	0.157	0.698		300/270/0.2/0		0	0.164	0.870
TSKI-LCD		1	0.026	0.051				1	0.075	0.413
TSKI-MDA		0	0.173	0.456	1			0	0.157	0.718
TSKI-MDA		1	0.026	0.028				1	0.041	0.102
TSKI-LCD	200/270/0.2/5	0	0.139	0.287					0.160	0.514
TSKI-LCD		1	0.023	0.019		300/270/0.2/5		1	0.032	0.048
TSKI-MDA	200/210/0.2/3	0	0.138	0.215	1			0	0.196	0.506
TSKI-MDA		1 0.012 0.011			1	0.038	0.036			
Method		n/p/r	η/ι	q	FDR	Power				
	TSKI-LCD				0	0.176	0.939	_		
	TSKI-LCD TSKI-MDA		500/270/0.2/0		1	0.099	0.872			
					0	0.181	0.922			
	TSKI-MDA				1	0.092	0.550			
	TSKI-LCD			/0.2/5	0	0.141	0.634			
	TSKI-LCD		500/270		1	0.086	0.267			
	TSKI-MDA	1	300/210/0.2/0		0	0.166	0.679			
	TSKI-MDA					0.084	0.216			

Comparing with BH and Adaptive Lasso

Adaptiv	ve Lasso		LS + BY				
$n/p/\eta/\iota$	FDR	Power	$n/p/\eta/\iota$	FDR	Power		
200/270/0.2/0	0.520	0.964	200/270/0.2/0	_	—		
300/270/0.2/0	0.468	0.997	300/270/0.2/0	0.000	0.001		
500/270/0.2/0	0.657	1.000	500/270/0.2/0	0.027	0.763		
200/270/0.2/5	0.604	0.705	200/270/0.2/5	_	—		
300/270/0.2/5	0.563	0.786	300/270/0.2/5	0.018	0.006		
500/270/0.2/5	0.677	0.891	500/270/0.2/5	0.026	0.276		

Real Data Application

Jinchi Lv, USC Marshall - 38/59

Real Data Application

- Investigating the temporal relation between the (one month ahead) monthly inflation and other macroeconomic time series
- The popular FRED-MD data set (Jurado, Ludvigson and Ng, 2015; McCracken and Ng, 2016; Medeiros and Mendes, 2016)
- Covariates include 127 other monthly macroeconomic variables and their first lags in an AR(2) model (*with feature dimensionality* p = 254)
- The one month ahead inflation as response variable

Figure 1: The U.S. inflation from May 2013 to January 2023.

- Inflation series from May 2013 to January 2023 (as response)
- Five-year rolling windows for analysis of versatile time varying patterns (sample size n = 60 for each window)

Jinchi Lv, USC Marshall - 40/59

- Applied TSKI-LCD with target FDR level $\tau^* = 0.2$ and q = 0, 1
- Identified some important covariates around 2020 when COVID-19 pandemic began

Figure 2: The left panel displays the percentage of times for "having any selections" indicators over 100 repetitions. The right panel shows the percentage of times of being selected for each covariate.

- Choice of q > 0 (with subsampling) indeed more conservative in terms of FDR control compared to that of q = 0 (without subsampling)
- Three frequently selected variables are ACOGNO (number of new orders for consumer goods), EXCAUSx (U.S./Canada exchange rate), and CLAIMSx (U.S. initial claims for unemployment benefits)
- COVID-19 pandemic has much stronger effects on the U.S. economy than the inflation drop in 2015 due to oil supply shock

Figure 3: number of new orders for consumer goods

Jinchi Lv, USC Marshall - 44/59

Figure 4: U.S./Canada exchange rate

Jinchi Lv, USC Marshall - 45/59

Figure 5: U.S. initial claims for unemployment benefits

Jinchi Lv, USC Marshall - 46/59

Theoretical Justifications

Jinchi Lv, USC Marshall - 47/59

Asymptotic Theory of TSKI

Theorem 1. Under some regularity conditions, we have

$$\begin{aligned} \mathsf{FDR} &\leq \inf_{\varepsilon > 0} \left[\tau^* \boldsymbol{e}^{\varepsilon} + \sum_{k=1}^{q+1} \mathbb{P}(\max_{1 \leq j \leq \rho} \widehat{\mathsf{KL}}_j^{k\pi} > \varepsilon) \right] \\ &+ \sum_{k=1}^{q+1} \sup_{\mathcal{D} \in \mathcal{R}^{\#H_k \times (2p+1)}} |\mathbb{P}(\mathcal{X}_k \in \mathcal{D}) - \mathbb{P}(\mathcal{X}_k^{\pi} \in \mathcal{D})|, \end{aligned}$$
(2)

where $0 < \tau^* < 1$ is the target FDR level and for each $1 \le k \le q + 1$ and $1 \le j \le p$,

$$\widehat{\mathsf{KL}}_{j}^{k\pi} = \sum_{i \in H_{k}} \log \left(\frac{f_{X_{j} \mid \boldsymbol{x}_{-j}}(X_{ij}^{\pi} \mid \boldsymbol{x}_{-ij}^{\pi}) f_{\widetilde{X}_{j}^{\dagger} \mid \boldsymbol{x}_{-j}}(\widetilde{X}_{ij}^{\pi} \mid \boldsymbol{x}_{-ij}^{\pi})}{f_{X_{j} \mid \boldsymbol{x}_{-j}}(\widetilde{X}_{ij}^{\pi} \mid \boldsymbol{x}_{-ij}^{\pi}) f_{\widetilde{X}_{j}^{\dagger} \mid \boldsymbol{x}_{-j}}(X_{ij}^{\pi} \mid \boldsymbol{x}_{-ij}^{\pi})} \right)$$
(3)

• $\{\boldsymbol{x}_{i}^{\pi}, \widetilde{\boldsymbol{x}}_{i}^{\pi}, Y_{i}^{\pi}\}_{i=1}^{n}$ an i.i.d. counterpart of $\{\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i}, Y_{i}\}_{i=1}^{n}$

•
$$\mathcal{X}_k = \{ \mathbf{x}_i, \widetilde{\mathbf{x}}_i, Y_i \}_{i \in H_k} \text{ and } \mathcal{X}_k^{\pi} = \{ \mathbf{x}_i^{\pi}, \widetilde{\mathbf{x}}_i^{\pi}, Y_i^{\pi} \}_{i \in H_k} \text{ for each } k \in \{1, \cdots, q+1\}$$

Jinchi Lv, USC Marshall - 48/59

$$\begin{aligned} \mathsf{FDR} &\leq \inf_{\varepsilon > 0} \left[\tau^* e^{\varepsilon} + \sum_{k=1}^{q+1} \mathbb{P}(\max_{1 \leq j \leq \rho} \widehat{\mathsf{KL}}_j^{k_{\pi}} > \varepsilon) \right] \\ &+ \sum_{k=1}^{q+1} \sup_{\mathcal{D} \in \mathcal{R}^{\# H_k \times (2\rho+1)}} |\mathbb{P}(\mathcal{X}_k \in \mathcal{D}) - \mathbb{P}(\mathcal{X}_k^{\pi} \in \mathcal{D})|, \end{aligned}$$

- The red term is caused by the misspecified conditional distribution X_i |x_{-i}; matches the result in (Barber, Candès and Samworth, 2020)
 - If no misspecification, the red term becomes 0, and $\varepsilon = 0$
- The blue term is caused by the serial dependence after subsampling

Corollary. If $\{x_i\}_{i \ge 1}$ satisfies Condition 1 with *q*-step and constants $C_0 > 0$ and $0 \le \rho < 1$, and Y_i is x_{i+1} -measurable, then (2) holds with

$$\sum_{k=1}^{q+1} \sup_{\mathcal{D}\in\mathcal{R}^{\#H_k\times(2p+1)}} |\mathbb{P}(\mathcal{X}_k\in\mathcal{D}) - \mathbb{P}(\mathcal{X}_k^{\pi}\in\mathcal{D})| \le C_0\times\rho^q\times n.$$
(4)

Moreover, when (Y_i, \boldsymbol{x}_i) 's are i.i.d., (4) holds with $\rho = 0$

• The term $C_0 \rho^q n$ reflects the price we pay for serial dependency

- The first result on FDR control for knockoffs inference under the setting of dependent data
- Enjoys asymptotic FDR control as long as $\log n = o(q)$
- Allows for high-dimensional time series data of feature dimensionality p_q = O(n^K) with some K > 0 for the choice of q = ⌊(log n)^{1+η}⌋ with some η > 0

Power Analysis

- Power performance depends on signal strength measure
- Consider GLM with link function $g(\cdot)$:

$$\mathbb{E}(Y_t|\boldsymbol{x}_t) = g(\boldsymbol{x}_t^T \vec{\beta}^o), \qquad (5)$$

Use GLM-Lasso coefficients difference to construct knockoff statistics

$$W_j = |\beta_j| - |\beta_{j+p}|,$$

where

$$(\widehat{\beta}_{1}, \cdots, \widehat{\beta}_{2p})^{T} = \arg\min_{\vec{\beta} \in \mathbb{R}^{2p}} \left\{ \sum_{i=1}^{n} 2\left(-Y_{i} \times (\boldsymbol{x}_{i}^{T}, \widetilde{\boldsymbol{x}}_{i}^{T}) \vec{\beta} + r\left((\boldsymbol{x}_{i}^{T}, \widetilde{\boldsymbol{x}}_{i}^{T}) \vec{\beta} \right) \right) + n\lambda_{n} \sum_{j=1}^{2p} |\beta_{j}| \right\}$$

Conditions for power analysis

- Condition 5. For $\lim_{n\to\infty} k_{3n} = 0$, it holds that $\mathbb{P}\left(\sum_{j=1}^{2p} |\widehat{\beta}_j \beta_j^*| \le c_0(\#S^*)\lambda_n\right) \ge 1 k_{3n}$
- Condition 6. There exists $k_{1n}q^{-1} \to \infty$ such that $\min_{j \in S^*} |\beta_j^*| > k_{1n}\lambda_n$
- Condition 7. For $\lim_{n\to\infty} k_{2n} = 0$, it holds that $2(\tau_1 \# S^*)^{-1} < c_1$ and $\mathbb{P}(\#\{j : W_j^k \ge T^k\} \ge c_1(\#S^*)) \ge 1 - k_{2n}$ with $k \in \{1, \dots, q+1\}$

Theoretical guarantee for power analysis

Theorem 3 It holds that for all large n,

$$\mathbb{P}\left(\{\widehat{S}=\emptyset\}\cup\left\{\frac{\#(S^*\cap\widehat{S})}{\#S^*}\ge 1-\frac{4c_0(1+q)}{k_{1n}}\right\}\right)\ge 1-(q+1)(k_{2n}+k_{3n})$$
(6)
If further $\tau_1=\tau^*\times K^{-1}\times (1-4(q+1)c_0k_{-1}^{-1})$ with some $K>1$ then

If further $\tau_1 = \tau^* \times K^{-1} \times (1 - 4(q + 1)c_0K_{1n})$ with some K > for all large n,

$$\mathbb{E}\left(\frac{\#(S^* \cap \widehat{S})}{\#S^*}\right) \ge \left(1 - \frac{(q+1)(\tau_1 + \theta_{\varepsilon})K}{K - 1} - (q+1) \times (k_{2n} + k_{3n})\right) \times k_{4n},$$
(7)

where $\lim_{n\to\infty} k_{4n} = 1$ and

$$\theta_{\varepsilon} = \inf\left\{\theta \ge \mathbf{0} : \max_{1 \le k \le q+1} \mathbb{E}\left(\frac{\#(\{j : W_j^k \ge T^k\} \cap (S^*)^c)}{\#\{j : W_j^k \ge T^k\} \lor \mathbf{1}}\right) \le \tau_1 + \theta\right\}$$
(8)

Jinchi Lv, USC Marshall - 54/59

- (6) shows that with asymptotic probability 1, the set of selected features is either Ø or has TDP close to 1
- The $\widehat{S} = \emptyset$ can happen if each and every subsample yields a large number of false positives (i.e., poor FDR control), making the e-values for all features very small so that none can pass the threshold
- (7) ensures that if FDR is controlled with (τ₁ + θ_ε)q = o(1), then the power is asymptotically one

Conclusions

Jinchi Lv, USC Marshall - 56/59

Conclusions

- Suggested the new times series knockoffs inference (TSKI) procedure for feature selection with FDR control
- Developed a general theory showing that TSKI can admit asymptotic FDR control and appealing power in high-dimensional time series setting
- Justified robustness of knockoffs inference for dependent data
- Many interesting yet challenging questions remain for knockoffs inference with time series data (e.g. complicated serial dependency and nonlinear structures)

References

Jinchi Lv, USC Marshall - 58/59

References

- Barber, R. F., Candès, E. J. and Samworth, R. J. (2020). Robust inference with knockoffs. *The Annals of Statistics* 48, 1409–1431.
- Chi, C.-M., Fan, Y., Ing, C.-K. and Lv, J. (2024).
 High-dimensional knockoffs inference for time series data.
 Manuscript.
- Fan, Y., Gao, L. and Lv, J. (2024). ARK: robust knockoffs inference with coupling. *Manuscript*.