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Outline of Chi, Fan, Ing and L. (2024)

� An economic forecasting example

� Time series knockoffs inference

� Numerical studies

� Theoretical justifications

Jinchi Lv, USC Marshall – 3/59



Inflation prediction
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Inflation prediction

� Identifying key economic factors that can influence inflation is a
long-standing research pursuit (King et al., 1995, Stock and
Watson, 1999, Crump et al., 2022)

� Main challenges are

� serial dependence
� large number of potentially important covariates (time

series covariates, their lags, and non-time series
covariates)

� nonlinearities attributed to the regime shifts and structural
changes (Hamilton [1989], Tong and Lim [1980])
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The US inflation series

Figure 1: The U.S. inflation from May 2013 to January 2023. Number
of potential time series covariates p = 127 (e.g., consumer price
indices, unemployment rates, exchange rates, housing indices, stock
market indices,...
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Rolling window prediction

Pros: mitigate the effects of nonlinearity and nonstationarity

Cons: sample size in each window is usually small

� Small sample size, together with serial dependence, presence of
nonlinearity, nonstationarity, and high-dimensional covariates,
makes practical inference highly challenging for time series data

� Goal: develop a reliable variable selection approach specifically
tailored for addressing high-dimensional time series data
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Variable selection with high dimensional time series

� Problem setup:

� Scalar time series response {yt}1≤t≤n
� Covariate vector {x t}1≤t≤n with x t ∈ Rp containing time

series covariates, lags, and possibly non-timeseries
covariates

� p is of high dimension
� (x t , yt ) is stationary across t

� Assumption: there exists S∗ ⊂ {1, · · · ,p} such that

yt ⊥⊥ x t,S∗c

∣∣x t,S∗

� Stationarity guarantees that S∗ is independent of t

� Goal: developing an algorithm that estimates S∗ by Ŝ such that

FDR = E

[
|(S∗)c ∩ Ŝ|
|Ŝ|

]
≤ τ∗
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Related literature

� False discovery rate (FDR) has been widely used for variable
selection error rate control (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001; Fan, Han and Gu, 2012; ...)

� Valid p-values are needed for the BH or BY framework

� Remains largely unclear how to construct justified p-values for
many popular nonparametric learning tools (e.g. random forests
and deep neural networks)
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Review of Model-X Knockoffs Inference
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Model-X Knockoffs Framework

� Introduced in Candès, Fan, Janson and L. (2018)

� Bypass the use of p-values to achieve FDR control

� Model-free: any model for the conditional dependence
Y |X1, · · · ,Xp

� Dimension free: any dimension (including p > n)

� Known covariate distribution: joint distribution of
x = (X1, · · · ,Xp) known

� Theoretically guaranteed to have finite-sample FDR control

� Intuition:
� Generate “fake” copies of original covariates which are

irrelevant to Y but mimics the dependence structure of
original covariates

� Act as controls for assessing importance of original
variables
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Model-X Knockoff Variables

Definition 1 (Candès, Fan, Janson and L., 18)
Model-X knockoffs for the family of random variables
x = (X1, · · · ,Xp)T are a new family of random variables
x̃ = (X̃1, · · · , X̃p)T constructed such that

� for any subset S ⊂ {1, · · · ,p},

(xT , x̃T )swap(S)
d
=(xT , x̃T )

� x̃ ⊥⊥ y |x
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The Knockoffs Statistics

Knockoff statistics Wj = fj (y, [X, X̃]) are variable importance
measures

� Positive Wj : original more important, strength measured by
magnitude

� Null variables: Wj should be symmetric around 0

� Eg: Lasso Coefficient Difference Wj = |β̂j | − |β̂j+p|

Set of selected variables

Ŝ = {j : Wj > T}
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Choice of Threshold

Intuition of FDR control

FDR = E
[

#selected null variables
#selcted variables

]

= E
[

#{null Wj ≥ T}
#{Wj ≥ T}

]

≈ E
[

#{null −Wj ≥ T}
#{Wj ≥ T}

]

≤ E
[

#{−Wj ≥ T}
#{Wj ≥ T}

]

This suggests to choose the threshold T by examining the ratio

#{−Wj ≥ T}
#{Wj ≥ T}
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Theorem 2 (Candès, Fan, Janson and L., 18)
Letting

T+ = min

{
t > 0 :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ≤ τ∗

}
(Knockoffs+)

and setting Ŝ = {j : Wj ≥ T+}, controls the usual FDR,

E

[
|Ŝ ∩ S∗|
|Ŝ| ∨ 1

]
≤ τ∗.
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Time Series Data
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Challenges with time series data

[y,X] =




y1, x1

y2, x2
...

yn, xn




y

time

� Model-X knockoffs assumes

� Row independence (i.e., no serial correlation)

� Known covariate distribution for xt

� Too strong for time series data!
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� Row independence =⇒ knockoff variables can be generated in a
row-wise fashion independent of other rows




x1

x2
...

xn




−→
−→

...

−→




x̃1

x̃2
...

x̃n




Question: is this row-wise construction of knockoff variables still valid
for time series data with serial dependence?
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� Consider the example where

xt = (yt−1, · · · , yt−p)T ,

then knowing covariate distribution of xt leads to known
stationary distribution of the time series, rendering the variable
selection invalid!

Question: how to relax the assumption of known covariate
distribution?
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The TSKI Procedure
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Three key ingredients

� Subsample: to overcome the difficulty caused by serial
dependence, we consider subsamples

Hk = {k + s(q + 1) : s = 0,1, · · · , bn − k
q + 1

c}

for k ∈ {1, · · · ,q + 1}

� Robust knockoffs: to accommodate unknown covariate
distribution, on each subsample Hk , we apply the robust
knockoffs inference (Barber, Candès and Samworth, 2020),
yielding a set of selected variables Ŝk

� Ensemble: produce an ensemble inference using the e-value
method (Wang and Ramdas (2022))
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TSKI

𝑥! , 𝑥" , 𝑥# , … , 𝑥$ , …

𝑥! , 𝑥%&" , 𝑥"%&# , … 𝑥" , 𝑥%&# , 𝑥"%&' , … 𝑥%&! , 𝑥"%&" , 𝑥#%&# , ……

subsample

Robust 
knockoffs

$𝑆! $𝑆" $𝑆%&!

Robust 
knockoffs

Robust 
knockoffs

e-value aggregation to get 
final set $𝑆 
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TSKI

Algorithm 1: Robust time series knockoffs inference (TSKI) via e-values

1 Let 0 < τ1 < 1 be a constant and 0 < τ∗ < 1 the target FDR level.

2 For each k ∈ {1, · · · , q + 1}, calculate the knockoff statistics W k
1 , · · · ,W k

p satisfying

(2) using sample {xi, x̃i, Yi}i∈Hk
.

3 Calculate the e-value statistics ej = (q + 1)−1
∑q+1

k=1 e
k
j , where

a

ekj =
p× 1{Wk

j ≥Tk}

1 +
∑p

s=1 1{Wk
s ≤−Tk}

,

T k = min

{
t ∈ Wk

+ :
1 + #{j : W k

j ≤ −t}
#{j : W k

j ≥ t} ∨ 1
≤ τ1

}
,

(3)

and Wk
+ = {|W k

s | : |W k
s | > 0} for each k ∈ {1, · · · , q + 1}.

4 Let Ŝ = {j : ej ≥ p(τ∗ × k̂)−1} with k̂ = max{k : e(k) ≥ p(τ∗ × k)−1}, where e(j)’s

are the ordered statistics of ej ’s such that e(1) ≥ · · · ≥ e(p).

amin ∅ and max ∅ are defined as ∞ and 0, respectively.

Algorithm 1 above provides a way to combine the sets of variables selected by multiple

individual knockoff filters via the e-value approach. The e-BH procedure is needed here since

naively taking the intersection or union over multiple selected sets by the knockoff filters (i.e.,

{j : W k
j ≥ T k} with k = 1, · · · , q+1) would not be guaranteed to control the FDR. Algorithm

1 can be viewed as a sophisticated majority voting procedure. In particular, if Ŝ ̸= ∅, then
Ŝ includes the intersection of variable sets selected by individual knockoff filters as a subset

and Ŝ is also a subset of the union of all variable sets selected by individual knockoff filters;

that is,

∩q+1
k=1{j : W k

j ≥ T k} ⊂ Ŝ ⊂ ∪q+1
k=1{j : W k

j ≥ T k}.

Meanwhile, the tuning parameter τ1 should be set to be smaller than τ∗ in order to reduce

the selection power loss compared to the underlying knockoffs procedure. See Theorem 3 in

Section 3 for details.

Condition 4 (h-step β-mixing with exponential decay). Assume that the process {xt} is a

p-dimensional stationary Markov chain with a transition kernel p : Rp × Rp 7−→ R and a

stationary distribution π. There exist a positive integer h, a measurable function V : Rp −→
[0,∞), and some constants 0 ≤ ρ < 1 and 0 < C0 <∞ such that for each x⃗ ∈ Rp,

∥∥∥ph(x⃗, ·)− π(·)
∥∥∥
TV
≤ CρhV (x⃗),

where C > 0 is some constant with C0 ≥ C
∫
Rp V (x⃗)dπ(x⃗) and ∥·∥TV denotes the total vari-

ation (TV) norm associated with measures. Moreover, for each x⃗ ∈ Rp, p(x⃗, ·) is absolutely

continuous with respect to the Lebesgue measure.

Let {xπ
i , x̃

π
i , Y

π
i }ni=1 be a sequence of i.i.d. random vectors such that (xπ

1 , x̃
π
1 , Y

π
1 ) and

(x1, x̃1, Y1) have the same distribution, Xk = {xi, x̃i, Yi}i∈Hk
, and X π

k = {xπ
i , x̃

π
i , Y

π
i }i∈Hk

8
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Subsampling effectiveness

� Condition 1 (h-step β-mixing with exponential decay ). Assume
that process {z t} is an m-dimensional stationary Markov chain
with a transition kernel p(·, ·) and stationary distribution π. There
exist a measurable function V : Rm → [0,∞) and some
constants 0 ≤ ρ < 1 and C0 > 0 such that for each x ∈ Rm,

||ph(x, ·)− π(·)||TV ≤ CρhV (x),

where ph(·, ·) denotes the h-step transition kernel, ‖ · ‖TV
represents the total variation distance, and C > 0 is some
constant

� Can hold for many popular time series models
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Example: ARX process

Proposition 1
Let x t = (Yt−1, · · · ,Yt−k1 ,h

T
t )T be from ph-dimensional

autoregressive models with exogenous variables (ARX)

Yt =

k1∑

j=1

αjYt−j +

k2∑

l=1

k3l∑

j=1

β
(l)
j H(l)

t−j+1 + εt ,

where H(l)
t = ε

(l)
t +

∑k3l
j=1 b(l)

j H(l)
t−j , and εt and ε(l)t are Gaussian.

Assume that for some constant C2 > 0 and sufficiently small s2 > 0,

sup
h>0
{ph exp (−s2h)} ≤ C2. (1)

Then under some regularity conditions of the regression coefficients,
{x (h)

t } satisfies Condition 1 with h-step.

Suggested h: h ∼ (log ph)1+δ
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Robust knockoffs inference

Relaxing the known covariate distribution assumption:

� κj : Rp−1 ×Rp−1 7−→ R : coordinatewise knockoff generator for
each j ∈ {1, · · · ,p} (approximate the distribution Xj |x−j )

� κ(x, ·): knockoff generator used to generate knockoff variables x̃

� Condition 2. The knockoff generator κ(·, ·) is independent of
training data {(x i ,Yi )}n

i=1

� Condition 3 (pairwise exchangeability). For each 1 ≤ j ≤ p, if
z̃ = (Z̃1, · · · , Z̃p)T is sampled from the conditional distribution
κ((X1, · · · ,Xj−1, X̃

†
j ,Xj+1, · · · ,Xp), ·), then (X̃ †j , Z̃j ,x−j , z̃−j ) and

(Z̃j , X̃
†
j ,x−j , z̃−j ) have the same distribution with X̃ †j sampled

from κj (x−j , ·) (a conditional distribution that approximates that
of Xj |x−j )
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Condition 3 illustration
Recall:

� κj : Rp−1 ×Rp−1 7−→ R : coordinatewise knockoff generator for
each j ∈ {1, · · · ,p}

� κ(x, ·): knockoff generator used to generate knockoff variables x̃

Original covariate vector: 
(𝑋! , 𝑋" , … , 𝑋# , … , 𝑋$)

Generate &𝑋#
% 	from 𝜅#(𝒙&# ,⋅)

New vector: 
(𝑋! , 𝑋" , … , &𝑋#

% , … , 𝑋$)

Generate +𝒛 	= &𝑍! , … , &𝑍$  from 
𝜅 (𝑋! , 𝑋" , … , &𝑋#

% , … , 𝑋$),⋅  

Exchangeability

&𝑋#
% , &𝑍# , 𝒙&# , +𝒛&𝒋

=(

&𝑍# , &𝑋#
% , 𝒙&# , +𝒛&𝒋
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Condition 3 illustration

Original covariate vector: 
(𝑋! , 𝑋" , … , 𝑋# , … , 𝑋$)

Generate &𝑋#
% 	from 𝜅#(𝒙&# ,⋅)

New vector: 
(𝑋! , 𝑋" , … , &𝑋#

% , … , 𝑋$)

Generate +𝒛 	= &𝑍! , … , &𝑍$  from 
𝜅 (𝑋! , 𝑋" , … , &𝑋#

% , … , 𝑋$),⋅  

Exchangeability

&𝑋#
% , &𝑍# , 𝒙&# , +𝒛&𝒋

=(

&𝑍# , &𝑋#
% , 𝒙&# , +𝒛&𝒋

Approximate condi<onal 
distribu<on of 𝑋#|𝒙&#
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� In implementation, the knockoff variables are generated as
κ(x, ·)

� Eg: in Gaussian case,
x̃ |x = (Ip − sΣ̂−1)x + (2sIp − s2Σ̂−1)z, z ∼ N(0, Ip)

� Only κ(·, ·) is needed for implementation; κj ’s are only needed
for theoretical derivation

� Barber, Candès and Samworth (2020) showed that under the
approximate exchangeability, model-X knockoffs achieves the
approximate FDR control under the i.i.d. data condition

� Question: how does the serial dependence affect the robust
knockoffs procedure?
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E-value aggregation

Recall:

� Subsampling yields q + 1 sets of selected variables

� Directly taking union or intersection does not guarantee FDR
control

� We will adopt the idea of e-value aggregation
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E-value

� Given a null hypothesis, we call a non-negative random variable
E an “e-value” if E[E ] ≤ 1 under the null

� To test a hypothesis at level α, we can reject the null hypothesis
when E ≥ 1/α

� With ideal knockoffs generated from the true covariate
distribution, Ren and Barber (2024) showed that

ej =
p × 1{Wj>T}

1 +
∑p

l=1 1{Wl≤−T}

are (relaxed) e-values, and that the e-BH procedure (Wang and
Ramdas (2022)) achieves FDR control in multiple testing

Ŝ = {j : ej ≥ p(τ∗k̂)−1} with k̂ = max{k : e(k) ≥ p(τ∗k)−1}

Jinchi Lv, USC Marshall – 31/59



TSKI using e-value aggregation

The average of multiple e-values is still an e-value

𝑥! , 𝑥" , 𝑥# , … , 𝑥$ , …

𝑥! , 𝑥%&" , 𝑥"%&# , … 𝑥" , 𝑥%&# , 𝑥"%&' , … 𝑥%&! , 𝑥"%&" , 𝑥#%&# , ……

subsample

Robust 
knockoffs

𝑒!
(!), … , 𝑒*

!

Robust 
knockoffs

Robust 
knockoffs

e-value aggregation: 𝑒+ =
!

%&!
∑, 𝑒+

(,) , 𝑗 = 1, … , 𝑝

𝑒!
("), … , 𝑒*

" 𝑒!
(%&!), … , 𝑒*

%&!

e-BH

Final set of selected variables *𝑆
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Question: Are these still valid e-values that can guarantee FDR
control in the existence of serial dependence?
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Simulation Studies
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SETARX model

For each integer t and ι ∈ {0,5}, we define

Yt =

{∑2
j=1(−0.5)j−1βYt−j + 0.6(

∑ι
j=1 Ht,j +

∑15
j=ι+1 Ht,j ) + εt , if Yt−1 > 0.7,∑2

j=1−(−0.5)j−1βYt−j + 0.6(−∑ι
j=1 Ht,j +

∑15
j=ι+1 Ht,j ) + εt , otherwise,

� {εt} ∼i.i.d. N(0,1)

� β = 0.7

� Ht,j = η × Ht−1,j + εt,j with j ∈ {1, · · · ,50} and η = 0.2

� x t = (Yt−1, · · · ,Yt−20,ht ,ht−1,ht−2,ht−3,ht−4) with
ht = (Ht,1, · · · ,Ht,50), giving rise to p = 270.
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TSKI performance
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Comparing with BH and Adaptive Lasso
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Real Data Application
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Real Data Application

� Investigating the temporal relation between the (one month
ahead) monthly inflation and other macroeconomic time series

� The popular FRED-MD data set (Jurado, Ludvigson and Ng, 2015; McCracken and

Ng, 2016; Medeiros and Mendes, 2016)

� Covariates include 127 other monthly macroeconomic variables
and their first lags in an AR(2) model (with feature dimensionality
p = 254)

� The one month ahead inflation as response variable
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Continued

Figure 1: The U.S. inflation from May 2013 to January 2023.

5 Real data application

Identifying important time series economic variables that can affect the inflation has been

an active research problem with a long history [24, 15], due to the importance of inflation.

In this section, we will analyze the temporal relations between the U.S. inflation and other

major time series covariates of the U.S. economy from May 2013 (t = 1) to January 2023

(t = 117) using monthly data in this period. From Figure 1, we see that the inflation series

consists of two nonstationary points at January 2015 and April 2020, corresponding to events

A and B, respectively. Event A corresponds to a sharp gasoline index decline, whereas event

B is due to the onset of the COVID-19 pandemic. These events cannot be predicted based

on the available information before their occurrences. In addition, the U.S. economy has

been experiencing economic recovery in the post-COVID-19 era, and there seem to be effects

of Russia–Ukraine war, as revealed by the clear structural change during time period C

indicated in Figure 1. In light of these versatile time varying patterns of the inflation series,

we facilitate our analysis by considering five-year rolling windows, where the ends of the

rolling windows start from April 2018 to January 2023 (a total of 58 rolling windows).

Specifically, we apply the TSKI-LCD with q ∈ {0, 1} to each five-year rolling window to

investigate the temporal relations between the inflation and other time series lags. These

monthly economic time series, including numerous types of consumer price indices, unem-

ployment rates, and housing prices, can be obtained from the FRED-MD database [28]1

and the U.S. Bureau of Labor Statistics. These time series have been adjusted according to

the instruction of the FRED-MD database, which can be found in the work of [28] or the

codes provided in the paper. In particular, the inflation at time t is defined as the adjusted

consumer price index for all goods

Inflationt :=

(
CPIt − CPIt−1

CPIt−1
× 100

)
%,

1The website URL: https://research.stlouisfed.org/econ/mccracken/fred-databases/.

20

� Inflation series from May 2013 to January 2023 (as response)

� Five-year rolling windows for analysis of versatile time varying
patterns (sample size n = 60 for each window)
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Continued

� Applied TSKI-LCD with target FDR level τ∗ = 0.2 and q = 0,1

� Identified some important covariates around 2020 when
COVID-19 pandemic began
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Figure 2: The left panel displays the percentage of times for “having
any selections” indicators over 100 repetitions. The right panel shows
the percentage of times of being selected for each covariate.
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Continued

� Choice of q > 0 (with subsampling) indeed more conservative in
terms of FDR control compared to that of q = 0 (without
subsampling)

� Three frequently selected variables are ACOGNO (number of
new orders for consumer goods), EXCAUSx (U.S./Canada
exchange rate), and CLAIMSx (U.S. initial claims for
unemployment benefits)

� COVID-19 pandemic has much stronger effects on the U.S.
economy than the inflation drop in 2015 due to oil supply shock
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Continued

Figure 3: number of new orders for consumer goods
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Continued

Figure 4: U.S./Canada exchange rate
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Continued

Figure 5: U.S. initial claims for unemployment benefits
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Theoretical Justifications
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Asymptotic Theory of TSKI

Theorem 1. Under some regularity conditions, we have

FDR ≤ inf
ε>0

[
τ∗eε +

q+1∑
k=1

P( max
1≤j≤p

K̂L
kπ
j > ε)

]

+

q+1∑
k=1

sup
D∈R#Hk×(2p+1)

|P(Xk ∈ D)− P(X πk ∈ D)|,
(2)

where 0 < τ∗ < 1 is the target FDR level and for each 1 ≤ k ≤ q + 1
and 1 ≤ j ≤ p,

K̂L
kπ
j =

∑

i∈Hk

log




fXj |x−j (X
π
ij |xπ−ij )fX̃†j |x−j

(X̃π
ij |xπ−ij )

fXj |x−j (X̃
π
ij |xπ−ij )fX̃†j |x−j

(Xπ
ij |xπ−ij )


 (3)

� {xπi , x̃
π
i ,Yπ

i }n
i=1 an i.i.d. counterpart of {x i , x̃ i ,Yi}n

i=1

� Xk = {x i , x̃ i ,Yi}i∈Hk and X πk = {xπi , x̃
π
i ,Yπ

i }i∈Hk for each
k ∈ {1, · · · ,q + 1}
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FDR ≤ inf
ε>0

[
τ∗eε +

q+1∑

k=1

P( max
1≤j≤p

K̂L
kπ
j > ε)

]

+

q+1∑

k=1

sup
D∈R#Hk×(2p+1)

|P(Xk ∈ D)− P(X πk ∈ D)|,

� The red term is caused by the misspecified conditional
distribution Xj |x−j ; matches the result in (Barber, Candès and Samworth, 2020)

� If no misspecification, the red term becomes 0, and ε = 0

� The blue term is caused by the serial dependence after
subsampling
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Continued

Corollary. If {x i}i≥1 satisfies Condition 1 with q-step and constants
C0 > 0 and 0 ≤ ρ < 1, and Yi is x i+1-measurable, then (2) holds with

q+1∑

k=1

sup
D∈R#Hk×(2p+1)

|P(Xk ∈ D)− P(X πk ∈ D)| ≤ C0 × ρq × n. (4)

Moreover, when (Yi ,x i )’s are i.i.d., (4) holds with ρ = 0

� The term C0ρ
qn reflects the price we pay for serial dependency
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Continued

� The first result on FDR control for knockoffs inference under the
setting of dependent data

� Enjoys asymptotic FDR control as long as log n = o(q)

� Allows for high-dimensional time series data of feature
dimensionality pq = O(nK ) with some K > 0 for the choice of
q = b(log n)1+ηc with some η > 0
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Power Analysis

� Power performance depends on signal strength measure

� Consider GLM with link function g(·):

E(Yt |x t ) = g(xT
t
~βo), (5)

� Use GLM-Lasso coefficients difference to construct knockoff
statistics

Wj = |βj | − |βj+p|,
where

(β̂1, · · · , β̂2p)
T

= arg min
~β∈R2p


n∑

i=1

2
(
−Yi × (xT

i , x̃
T
i )
~β + r

(
(xT

i , x̃
T
i )
~β
))

+ nλn

2p∑
j=1

|βj |



Jinchi Lv, USC Marshall – 52/59



Conditions for power analysis

� Condition 5. For limn→∞ k3n = 0, it holds that
P
(∑2p

j=1 |β̂j − β∗j | ≤ c0(#S∗)λn

)
≥ 1− k3n

� Condition 6. There exists k1nq−1 →∞ such that
minj∈S∗ |β∗j | > k1nλn

� Condition 7. For limn→∞ k2n = 0, it holds that 2(τ1#S∗)−1 < c1
and P(#{j : W k

j ≥ T k} ≥ c1(#S∗)) ≥ 1− k2n with
k ∈ {1, · · · ,q + 1}
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Theoretical guarantee for power analysis

Theorem 3
It holds that for all large n,

P

(
{Ŝ = ∅} ∪

{
#(S∗ ∩ Ŝ)

#S∗
≥ 1− 4c0(1 + q)

k1n

})
≥ 1−(q+1)(k2n+k3n)

(6)
If further τ1 = τ∗ × K−1 × (1− 4(q + 1)c0k−1

1n ) with some K > 1, then
for all large n,

E

(
#(S∗ ∩ Ŝ)

#S∗

)
≥
(

1− (q + 1)(τ1 + θε)K
K − 1

− (q + 1)× (k2n + k3n)

)
×k4n,

(7)
where limn→∞ k4n = 1 and

θε = inf

{
θ ≥ 0 : max

1≤k≤q+1
E

(
#({j : W k

j ≥ T k} ∩ (S∗)c)

#{j : W k
j ≥ T k} ∨ 1

)
≤ τ1 + θ

}

(8)
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� (6) shows that with asymptotic probability 1, the set of selected
features is either ∅ or has TDP close to 1

� The Ŝ = ∅ can happen if each and every subsample yields a
large number of false positives (i.e., poor FDR control), making
the e-values for all features very small so that none can pass the
threshold

� (7) ensures that if FDR is controlled with (τ1 + θε)q = o(1), then
the power is asymptotically one
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Conclusions
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Conclusions

� Suggested the new times series knockoffs inference (TSKI)
procedure for feature selection with FDR control

� Developed a general theory showing that TSKI can admit
asymptotic FDR control and appealing power in
high-dimensional time series setting

� Justified robustness of knockoffs inference for dependent data

� Many interesting yet challenging questions remain for knockoffs
inference with time series data (e.g. complicated serial
dependency and nonlinear structures)
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